Volume 15, Issue 3 ( Special Issue (AI in Medicine) - August 2023 2023)                   Iranian Journal of Blood and Cancer 2023, 15(3): 68-83 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tavakkoli Shiraji S, Sanaei M. The application of artificial intelligence (AI) in the diagnosis of platelet disorders. Iranian Journal of Blood and Cancer 2023; 15 (3) :68-83
URL: http://ijbc.ir/article-1-1425-en.html
1- Department of Internal Medicine, School of Medicine, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
2- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran , javadsanaei137@gmail.com
Abstract:   (338 Views)
Artificial intelligence (AI), machine learning, and deep learning are emerging technologies with the potential to revolutionize the diagnosis and treatment of various diseases, ranging from cancer to cardiovascular disorders. These advanced algorithms have the ability to learn patterns and associations, enabling them to make predictions and enhance therapeutic approaches. Among the conditions that can benefit from AI's capabilities are platelet disorders, which at least in some cases may lead to life-threatening excessive bleeding. The conventional methods to diagnose these disorders mainly rely on manual or automated blood cell counting and morphology analysis that are prone to errors. In recent years, researchers have turned to machine learning models to predict platelet disorders, including drug-induced immune thrombocytopenia (DITP), sepsis-associated thrombocytopenia (SAT), immune thrombocytopenic purpura (ITP), disseminated intravascular coagulation (DIC), as well as thrombocytosis. These studies have yielded promising results, demonstrating satisfactory efficacy and accuracy. Our analysis revealed that key predictive parameters include the patient's medical history, platelet counts, and coagulation factors. Notably, the support vector machine (SVM) algorithm exhibited the highest performance in predicting platelet disorders, achieving the highest accuracy score while analyzing a relatively lower number of parameters.
Full-Text [PDF 5154 kb]   (197 Downloads)    
: Review Article | Subject: AI in Medicine
Received: 2023/07/2 | Accepted: 2023/08/28 | Published: 2023/09/6

References
1. Harrison P. Platelet function analysis. Blood reviews. 2005;19(2):111-23. [DOI:10.1016/j.blre.2004.05.002]
2. Noetzli LJ, French SL, Machlus KR. New insights into the differentiation of megakaryocytes from hematopoietic progenitors. Arteriosclerosis, thrombosis, and vascular biology. 2019;39(7):1288-300. [DOI:10.1161/ATVBAHA.119.312129]
3. Haley KM. Platelet Disorders. Pediatr Rev. 2020;41(5):224-35. [DOI:10.1542/pir.2018-0359]
4. Lee E-J, Lee AI. Thrombocytopenia. Primary Care: Clinics in Office Practice. 2016;43(4):543-57. [DOI:10.1016/j.pop.2016.07.008]
5. Bashash D, Hosseini-Baharanchi FS, Rezaie-Tavirani M, Safa M, Akbari Dilmaghani N, Faranoush M, et al. The Prognostic Value of Thrombocytopenia in COVID-19 Patients; a Systematic Review and Meta-Analysis. Arch Acad Emerg Med. 2020;8(1):e75.
6. Delshad M, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Poopak B, Shokouhi S, Bashash D. Platelets in the perspective of COVID-19; pathophysiology of thrombocytopenia and its implication as prognostic and therapeutic opportunity. Int Immunopharmacol. 2021;99:107995. [DOI:10.1016/j.intimp.2021.107995]
7. Vannucchi AM, Barbui T. Thrombocytosis and thrombosis. ASH Education program book. 2007;2007(1):363-70. [DOI:10.1182/asheducation-2007.1.363]
8. Mohan G, Malayala SV, Mehta P, Balla M. A comprehensive review of congenital platelet disorders, thrombocytopenias and thrombocytopathies. Cureus. 2020;12(10). [DOI:10.7759/cureus.11275]
9. Al-Huniti A, Kahr WH. Inherited platelet disorders: diagnosis and management. Transfusion Medicine Reviews. 2020;34(4):277-85. [DOI:10.1016/j.tmrv.2020.09.006]
10. Cheng Y, Chen C, Yang J, Yang H, Fu M, Zhong X, et al. Using Machine Learning Algorithms to Predict Hospital Acquired Thrombocytopenia after Operation in the Intensive Care Unit: A Retrospective Cohort Study. Diagnostics. 2021;11(9):1614. [DOI:10.3390/diagnostics11091614]
11. Elshoeibi AM, Ferih K, Elsabagh AA, Elsayed B, Elhadary M, Marashi M, et al. Applications of Artificial Intelligence in Thrombocytopenia. Diagnostics (Basel). 2023;13(6). [DOI:10.3390/diagnostics13061060]
12. Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electronic Markets. 2021;31(3):685-95. [DOI:10.1007/s12525-021-00475-2]
13. Singh M, Pujar GV, Kumar SA, Bhagyalalitha M, Akshatha HS, Abuhaija B, et al. Evolution of machine learning in tuberculosis diagnosis: a review of deep learning-based medical applications. Electronics. 2022;11(17):2634. [DOI:10.3390/electronics11172634]
14. Wang F, Casalino LP, Khullar D. Deep learning in medicine-promise, progress, and challenges. JAMA internal medicine. 2019;179(3):293-4. [DOI:10.1001/jamainternmed.2018.7117]
15. Mani V, Ghonge MM, Chaitanya NK, Pal O, Sharma M, Mohan S, et al. A new blockchain and fog computing model for blood pressure medical sensor data storage. Computers and Electrical Engineering. 2022;102:108202. [DOI:10.1016/j.compeleceng.2022.108202]
16. Liu P-r, Lu L, Zhang J-y, Huo T-t, Liu S-x, Ye Z-w. Application of artificial intelligence in medicine: an overview. Current Medical Science. 2021;41(6):1105-15. [DOI:10.1007/s11596-021-2474-3]
17. Malik P, Pathania M, Rathaur VK. Overview of artificial intelligence in medicine. Journal of family medicine and primary care. 2019;8(7):2328. [DOI:10.4103/jfmpc.jfmpc_440_19]
18. Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha AK. Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment. A New Era. Curr Oncol. 2021;28(3):1581-607. [DOI:10.3390/curroncol28030149]
19. Pei Q, Luo Y, Chen Y, Li J, Xie D, Ye T. Artificial intelligence in clinical applications for lung cancer: diagnosis, treatment and prognosis. Clin Chem Lab Med. 2022;60(12):1974-83. [DOI:10.1515/cclm-2022-0291]
20. Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in the diagnosis of COVID-19: challenges and perspectives. Int J Biol Sci. 2021;17(6):1581-7. [DOI:10.7150/ijbs.58855]
21. Huang X, Wang H, She C, Feng J, Liu X, Hu X, et al. Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy. Front Endocrinol (Lausanne). 2022;13:946915. [DOI:10.3389/fendo.2022.946915]
22. Nomura A, Noguchi M, Kometani M, Furukawa K, Yoneda T. Artificial Intelligence in Current Diabetes Management and Prediction. Curr Diab Rep. 2021;21(12):61. [DOI:10.1007/s11892-021-01423-2]
23. Nahar JK, Lopez-Jimenez F. Utilizing Conversational Artificial Intelligence, Voice, and Phonocardiography Analytics in Heart Failure Care. Heart Fail Clin. 2022;18(2):311-23. [DOI:10.1016/j.hfc.2021.11.006]
24. Tian Y, Yang J, Lan M, Zou T. Construction and analysis of a joint diagnosis model of random forest and artificial neural network for heart failure. Aging (Albany NY). 2020;12(24):26221-35. [DOI:10.18632/aging.202405]
25. Yasmin F, Shah SMI, Naeem A, Shujauddin SM, Jabeen A, Kazmi S, et al. Artificial intelligence in the diagnosis and detection of heart failure: the past, present, and future. Rev Cardiovasc Med. 2021;22(4):1095-113. [DOI:10.31083/j.rcm2204121]
26. Gedefaw L, Liu CF, Ip RKL, Tse HF, Yeung MHY, Yip SP, et al. Artificial Intelligence-Assisted Diagnostic Cytology and Genomic Testing for Hematologic Disorders. Cells. 2023;12(13). [DOI:10.3390/cells12131755]
27. Cai S, Han IC, Scott AW. Artificial intelligence for improving sickle cell retinopathy diagnosis and management. Eye (Lond). 2021;35(10):2675-84. [DOI:10.1038/s41433-021-01556-4]
28. El Alaoui Y, Elomri A, Qaraqe M, Padmanabhan R, Yasin Taha R, El Omri H, et al. A Review of Artificial Intelligence Applications in Hematology Management: Current Practices and Future Prospects. J Med Internet Res. 2022;24(7):e36490. [DOI:10.2196/36490]
29. Radakovich N, Cortese M, Nazha A. Acute myeloid leukemia and artificial intelligence, algorithms and new scores. Best Pract Res Clin Haematol. 2020;33(3):101192. [DOI:10.1016/j.beha.2020.101192]
30. Belcic T, Cernelc P, Sever M. PB2225 Artificial intelligence aiding in diagnosis of JAK2 V617F negative patients with WHO defined essential thrombocythemia. HemaSphere. 2019;3(S1):998. [DOI:10.1097/01.HS9.0000567380.33673.ae]
31. Greenberg EM, Kaled ES. Thrombocytopenia. Crit Care Nurs Clin North Am. 2013;25(4):427-34, v. [DOI:10.1016/j.ccell.2013.08.003]
32. Smock KJ, Perkins SL. Thrombocytopenia: an update. Int J Lab Hematol. 2014;36(3):269-78. [DOI:10.1111/ijlh.12214]
33. Aster RH, Curtis BR, McFarland JG, Bougie DW. Drug-induced immune thrombocytopenia: pathogenesis, diagnosis, and management. J Thromb Haemost. 2009;7(6):911-8. [DOI:10.1111/j.1538-7836.2009.03360.x]
34. Curtis BR. Drug-induced immune thrombocytopenia: incidence, clinical features, laboratory testing, and pathogenic mechanisms. Immunohematology. 2014;30(2):55-65. [DOI:10.21307/immunohematology-2019-099]
35. Vayne C, Guéry EA, Rollin J, Baglo T, Petermann R, Gruel Y. Pathophysiology and Diagnosis of Drug-Induced Immune Thrombocytopenia. J Clin Med. 2020;9(7). [DOI:10.3390/jcm9072212]
36. Arnold DM, Curtis BR, Bakchoul T. Recommendations for standardization of laboratory testing for drug-induced immune thrombocytopenia: communication from the SSC of the ISTH. J Thromb Haemost. 2015;13(4):676-8. [DOI:10.1111/jth.12852]
37. Arnold DM, Kukaswadia S, Nazi I, Esmail A, Dewar L, Smith JW, et al. A systematic evaluation of laboratory testing for drug-induced immune thrombocytopenia. J Thromb Haemost. 2013;11(1):169-76. [DOI:10.1111/jth.12052]
38. Wang B, Tan X, Guo J, Xiao T, Jiao Y, Zhao J, et al. Drug-Induced Immune Thrombocytopenia Toxicity Prediction Based on Machine Learning. Pharmaceutics. 2022;14(5). [DOI:10.3390/pharmaceutics14050943]
39. Hogan M, Berger JS. Heparin-induced thrombocytopenia (HIT): Review of incidence, diagnosis, and management. Vasc Med. 2020;25(2):160-73. [DOI:10.1177/1358863X19898253]
40. Dhakal B, Kreuziger LB, Rein L, Kleman A, Fraser R, Aster RH, et al. Disease burden, complication rates, and health-care costs of heparin-induced thrombocytopenia in the USA: a population-based study. Lancet Haematol. 2018;5(5):e220-e31. [DOI:10.1016/S2352-3026(18)30046-2]
41. Cuker A, Arepally GM, Chong BH, Cines DB, Greinacher A, Gruel Y, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: heparin-induced thrombocytopenia. Blood Adv. 2018;2(22):3360-92. [DOI:10.1182/bloodadvances.2018024489]
42. Nilius H, Cuker A, Haug S, Nakas C, Studt JD, Tsakiris DA, et al. A machine-learning model for reducing misdiagnosis in heparin-induced thrombocytopenia: A prospective, multicenter, observational study. EClinicalMedicine. 2023;55:101745. [DOI:10.1016/j.eclinm.2022.101745]
43. Natsumoto B, Yokota K, Omata F, Furukawa K. Risk factors for linezolid-associated thrombocytopenia in adult patients. Infection. 2014;42(6):1007-12. [DOI:10.1007/s15010-014-0674-5]
44. Tajima M, Kato Y, Matsumoto J, Hirosawa I, Suzuki M, Takashio Y, et al. Linezolid-Induced Thrombocytopenia Is Caused by Suppression of Platelet Production via Phosphorylation of Myosin Light Chain 2. Biol Pharm Bull. 2016;39(11):1846-51. [DOI:10.1248/bpb.b16-00427]
45. Takahashi S, Tsuji Y, Kasai H, Ogami C, Kawasuji H, Yamamoto Y, et al. Classification Tree Analysis Based On Machine Learning for Predicting Linezolid-Induced Thrombocytopenia. J Pharm Sci. 2021;110(5):2295-300. [DOI:10.1016/j.xphs.2021.02.014]
46. Maray I, Rodríguez-Ferreras A, Álvarez-Asteinza C, Alaguero-Calero M, Valledor P, Fernández J. Linezolid induced thrombocytopenia in critically ill patients: Risk factors and development of a machine learning-based prediction model. J Infect Chemother. 2022;28(9):1249-54. [DOI:10.1016/j.jiac.2022.05.004]
47. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama. 2016;315(8):801-10. [DOI:10.1001/jama.2016.0287]
48. Vanderschueren S, De Weerdt A, Malbrain M, Vankersschaever D, Frans E, Wilmer A, et al. Thrombocytopenia and prognosis in intensive care. Crit Care Med. 2000;28(6):1871-6. [DOI:10.1097/00003246-200006000-00031]
49. Larkin CM, Santos-Martinez M-J, Ryan T, Radomski MW. Sepsis-associated thrombocytopenia. Thrombosis research. 2016;141:11-6. [DOI:10.1016/j.thromres.2016.02.022]
50. Jiang X, Wang Y, Pan Y, Zhang W. Prediction Models for Sepsis-Associated Thrombocytopenia Risk in Intensive Care Units Based on a Machine Learning Algorithm. Front Med (Lausanne). 2022;9:837382. [DOI:10.3389/fmed.2022.837382]
51. Ling J, Liao T, Wu Y, Wang Z, Jin H, Lu F, et al. Predictive value of red blood cell distribution width in septic shock patients with thrombocytopenia: A retrospective study using machine learning. J Clin Lab Anal. 2021;35(12):e24053. [DOI:10.1002/jcla.24053]
52. Liu S, Wang P, Shen PP, Zhou JH. Predictive Values of Red Blood Cell Distribution Width in Assessing Severity of Chronic Heart Failure. Med Sci Monit. 2016;22:2119-25. [DOI:10.12659/MSM.898103]
53. Ellingsen TS, Lappegård J, Skjelbakken T, Braekkan SK, Hansen JB. Impact of red cell distribution width on future risk of cancer and all-cause mortality among cancer patients - the Tromsø Study. Haematologica. 2015;100(10):e387-9. [DOI:10.3324/haematol.2015.129601]
54. Wang AY, Ma HP, Kao WF, Tsai SH, Chang CK. Red blood cell distribution width is associated with mortality in elderly patients with sepsis. Am J Emerg Med. 2018;36(6):949-53. [DOI:10.1016/j.ajem.2017.10.056]
55. Jandial A, Kumar S, Bhalla A, Sharma N, Varma N, Varma S. Elevated Red Cell Distribution Width as a Prognostic Marker in Severe Sepsis: A Prospective Observational Study. Indian J Crit Care Med. 2017;21(9):552-62. [DOI:10.4103/ijccm.IJCCM_208_17]
56. Zainal A, Salama A, Alweis R. Immune thrombocytopenic purpura. J Community Hosp Intern Med Perspect. 2019;9(1):59-61. [DOI:10.1080/20009666.2019.1565884]
57. Swinkels M, Rijkers M, Voorberg J, Vidarsson G, Leebeek FWG, Jansen AJG. Emerging Concepts in Immune Thrombocytopenia. Front Immunol. 2018;9:880. [DOI:10.3389/fimmu.2018.00880]
58. Kühne T, Berchtold W, Michaels LA, Wu R, Donato H, Espina B, et al. Newly diagnosed immune thrombocytopenia in children and adults: a comparative prospective observational registry of the Intercontinental Cooperative Immune Thrombocytopenia Study Group. Haematologica. 2011;96(12):1831. [DOI:10.3324/haematol.2011.050799]
59. Shahgholi E, Vosough P, Sotoudeh K, Arjomandi K, Ansari S, Salehi S, et al. Intravenous immune globulin versus intravenous anti-D immune globulin for the treatment of acute immune thrombocytopenic purpura. The Indian Journal of Pediatrics. 2008;75:1231-5. [DOI:10.1007/s12098-008-0243-y]
60. Eshghi P, Abolghasemi H, Akhlaghi AA, Ashrafi F, Bordbar M, Hajifathali A, et al. Patient and Physician Perspectives in the Management of Immune Thrombocytopenia in Iran: Responses from the ITP World Impact Survey (I-WISh). Clinical and Applied Thrombosis/Hemostasis. 2023;29:10760296221130335. [DOI:10.1177/10760296221130335]
61. Rahiminejad MS, Sadeghi MM, Mohammadinejad P, Sadeghi B, Abolhassani H, Firoozabadi MMD, et al. Evaluation of humoral immune function in patients with chronic idiopathic thrombocytopenic purpura. Iranian Journal of Allergy, Asthma and Immunology. 2013:50-6.
62. Kim TO, MacMath D, Pettit RW, Kirk SE, Grimes AB, Gilbert MM, et al. Predicting Chronic Immune Thrombocytopenia in Pediatric Patients at Disease Presentation: Leveraging Clinical and Laboratory Characteristics Via Machine Learning Models. Blood. 2021;138:1023. [DOI:10.1182/blood-2021-153989]
63. An Z-Y, Wu Y-J, Huang R-B, Zhou H, Huang Q-S, Fu H-X, et al. P1655: PERSONALIZED MACHINE-LEARNING-BASED PREDICTION FOR CRITICAL IMMUNE THROMBOCYTOPENIA BLEEDS: A NATIONWIDE DATA STUDY. HemaSphere. 2022;6(Suppl). [DOI:10.1097/01.HS9.0000849476.07698.72]
64. Zhang X-H, Huang R-B, Zhang J-N, Huang Q-S, Fu H-X. P1652: MACHINE-LEARNING-BASED MORTALITY PREDICTION OF ICH IN ADULTS WITH ITP: A NATIONWIDE REPRESENTATIVE MULTICENTRE STUDY. HemaSphere. 2022;6(Suppl). [DOI:10.1097/01.HS9.0000849464.21167.c9]
65. Gando S, Levi M, Toh CH. Disseminated intravascular coagulation. Nat Rev Dis Primers. 2016;2:16037. [DOI:10.1038/nrdp.2016.37]
66. Taylor FB, Jr., Toh CH, Hoots WK, Wada H, Levi M. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86(5):1327-30. [DOI:10.1055/s-0037-1616068]
67. Gando S, Iba T, Eguchi Y, Ohtomo Y, Okamoto K, Koseki K, et al. A multicenter, prospective validation of disseminated intravascular coagulation diagnostic criteria for critically ill patients: comparing current criteria. Crit Care Med. 2006;34(3):625-31. [DOI:10.1097/01.CCM.0000202209.42491.38]
68. Levi M. Diagnosis and treatment of disseminated intravascular coagulation. Int J Lab Hematol. 2014;36(3):228-36. [DOI:10.1111/ijlh.12221]
69. Yoon JG, Heo J, Kim M, Park YJ, Choi MH, Song J, et al. Machine learning-based diagnosis for disseminated intravascular coagulation (DIC): Development, external validation, and comparison to scoring systems. PLoS One. 2018;13(5):e0195861. [DOI:10.1371/journal.pone.0195861]
70. Yang H, Li J, Liu S, Zhang M, Liu J. An interpretable DIC risk prediction model based on convolutional neural networks with time series data. BMC Bioinformatics. 2022;23(1):471. [DOI:10.1186/s12859-022-05004-2]
71. An Z-Y, Wu Y-J, He Y, Zhu X-L, Su Y, Wang C-C, et al. Machine-Learning Based Early Warning System for Prediction for Disseminated Intravascular Coagulation after Allogeneic Hematopoietic Stem Cell Transplantation: A Nationwide Multicenter Study. Blood. 2021;138(Supplement 1):2113-. [DOI:10.1182/blood-2021-150437]
72. Schafer AI. Thrombocytosis. New England Journal of Medicine. 2004;350(12):1211-9. [DOI:10.1056/NEJMra035363]
73. Stockklausner C, Duffert CM, Cario H, Knöfler R, Streif W, Kulozik AE. Thrombocytosis in children and adolescents-classification, diagnostic approach, and clinical management. Ann Hematol. 2021;100(7):1647-65. [DOI:10.1007/s00277-021-04485-0]
74. Mahan CE, Holdsworth MT, Welch SM, Borrego M, Spyropoulos AC. Deep-vein thrombosis: a United States cost model for a preventable and costly adverse event. Thromb Haemost. 2011;106(3):405-15. [DOI:10.1160/TH11-02-0132]
75. Wells PS, Anderson DR, Rodger M, Forgie M, Kearon C, Dreyer J, et al. Evaluation of D-dimer in the diagnosis of suspected deep-vein thrombosis. N Engl J Med. 2003;349(13):1227-35. [DOI:10.1056/NEJMoa023153]
76. Spyropoulos AC, Anderson FA, Jr., FitzGerald G, Decousus H, Pini M, Chong BH, et al. Predictive and associative models to identify hospitalized medical patients at risk for VTE. Chest. 2011;140(3):706-14. [DOI:10.1378/chest.10-1944]
77. Greene MT, Spyropoulos AC, Chopra V, Grant PJ, Kaatz S, Bernstein SJ, et al. Validation of Risk Assessment Models of Venous Thromboembolism in Hospitalized Medical Patients. Am J Med. 2016;129(9):1001.e9-.e18. [DOI:10.1016/j.amjmed.2016.03.031]
78. Ryan L, Mataraso S, Siefkas A, Pellegrini E, Barnes G, Green-Saxena A, et al. A Machine Learning Approach to Predict Deep Venous Thrombosis Among Hospitalized Patients. Clin Appl Thromb Hemost. 2021;27:1076029621991185. [DOI:10.1177/1076029621991185]
79. Chen J, Dong H, Fu R, Liu X, Xue F, Liu W, et al. Machine learning analyses constructed a novel model to predict recurrent thrombosis in adults with essential thrombocythemia. Journal of Thrombosis and Thrombolysis. 2023:1-10. [DOI:10.1007/s11239-023-02833-7]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb